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The effect of axial residual stress on the properties of continuous fibre composites is 
calculated. It is emphasized that composite strength should be considered as a more 
complex phenomenon than usually done so by merely considering ultimate strength. It is 
shown that the information contained in a(e)-curves if plotted in a more suitable form as 
hysteresis and set* versus total strain, taking into account residual stress, may be a useful 
means for characterizing the composite and for detecting deviations from perfect 
structure. Conclusions are derived as to how composite performance may be improved. 
The results are substantiated by metallic composite data. 

1. Introduction 
Growing interest in fibrous composites has given 
rise to a considerable number of publications 
dealing with mechanical strength of these materials. 
Favourite topics of these papers are such complex 
phenomena as crack propagation, delamination, 
fatigue, creep and their dependence on several 
variables, some of which are of a complex nature 
themselves, as thermomechanical treatment, struc- 
ture of  interface layers, arrangement of  fibres, and 
statistics of  fibre strength. The reasoning is often 
kept to a microscopic level, including statements 
and guesses about dislocation structure in order to 
explain the outcome of a special experiment. On 
the other hand, some properties of  the composite 
are based on very simple concepts such as the 
widely used rule of  mixtures. It is somewhat sur- 
prising that the simple kind of  reasoning in com- 
posite problems seems to have never been 
thoroughly worked out. The aim of this paper is to 
show an obvious method of calculating certain 
mechanical composite properties from those of the 
components as a first approximation. In order to 
clarify the relations between component and com- 
posite properties, all secondary phenomena are 
neglected. Their effect'should be considered later, 
once the consequences of  the simplest possible 
model have been worked out. We feel this ap- 

* Strain remaining after loading. 
�9 1977 Chapman and Hall Ltd. Printed in Great Britain. 

proach may lead to a better understanding of com- 
posite behaviour than can be achieved by more 
sophisticated models which are tailored for special 
systems. 

The subject of  this paper is the stress-strain be- 
haviour and related phenomena such as mechanical 
hysteresis and setting of the material, and their 
dependence on residual stress. The fatigue of com- 
posites will be dealt with in a similar manner in a 
forthcoming paper. 

Our results allow simpler explanations of  some 
observed phenomena than those given in literature. 
Furthermore, they enable us to question some 
widespread beliefs, and even to reject some views 
which have been held to be true hitherto. It is 
shown how to derive more useful information 
from o(e) curves than could be obtained by con- 
ventional methods. Among other results, in s i tu  

o(e)-curves of the matrix are obtained, avoiding 
the errors usually brought in by calculating the 
curves via the rule of mixtures. 

2. Stress-strain behaviour 
2.1. General remarks 
The subject of our investigation is continuous fibre 
composites, especially their response to load in the 
direction of fibres. As pointed out above, the 
reasoning is to proceed in terms of the simplest 
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possible model. We are well aware that the term 
"simplest possible" is not uniquely defined or self- 
evident, but we think there will be little dispute 
about the proposal to ascribe that attribute to a 
model with the following characteristics: 

The model 
(1) the components behave ideally elastic-plastic, 
i.e. without any strain hardening, 
(2) the components behave in the composite in the 
same way as they do separately. 

While this simple model provides qualitative under- 
standing rather than quantitative statements about 
real composites, it describes metallic composites, 
such as steel wire/aluminium, remarkably well. 

Symbols and subscripts are chosen so that their 
meaning is easy to keep in mind and the danger of  
confusion with notations of other authors is 
reduced: 

v: volume fraction of  fibres 
o, e, E:  axial stressl strain, and Young's modulus 
of the composite, or of  matrix or fibre as defined 
by subscripts M and F respectively 
Subscripts 0: at zero stress of the composite 

00: at zero stress and zero strain of the 
composite 

no, Ooo : residual composite stress (defined by 
Equation 3) 

Subscripts y: yield 
yl  : yield of only one component of the 

composite 
yh: yield of one component resulting in 

the formation of hysteresis loops 
y2: yield of the two components of the 

composite 
es: composite strain remaining after un- 

loading (set) 
es~: characteristic value of the set 
~?e]: stored elastic energy per volume 

7: work of hysteresis per volume per 
cycle 

The model is illustrated in Fig. 1. The fact that all 
reasoning will be for ductile components does not 
mean that this approach cannot be used to de- 
scribe brittle ones. Results for composites with 
one or two brittle components may easily be 
derived from those of ductile composites on the 
level of  our simple approach. 

If the two components deform elastically with 
changing load of the composite, Young's modulus 
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Figure 1 Graphical representation of the assumptions of 
our model. 

of  the composite is given by the well-known rule 
of mixtures 

E~ = vEF + (1 --v)EM (1) 

provided that Poisson's ratio of fibre and matrix 
coincide. Otherwise some small deviations from 
Equation 1 should be expected [1], which are 
neglected in our approach. As soon as one 
component begins to yield, da/de drops to a value 
which is usually called the secondary modulus Em 
Since we neglect strain hardening as well as lateral 
constraint, En is determined only by that 
component which has not yielded so far: 

En = VEF if the matrix yields first 
(2) 

E n = (1 - -v )E M if the fibre yields first. 

In a quantitative description it would read "if  
eMy -- eM0 o X eFy -- eF00", as will be discussed in 
connection with Equation 7, but for the sake of 
convenience we prefer the verbal form. 

The ratio ale, which is sometimes called the 
secant modulus, is given no special attention here, 
since it seems to be hardly justified and misleading, 
tGo, to conceive this quantity as a modulus. 

2.2. Deduction of a(e) in the presence of 
axial residual stress 

The presence of residual stress must be anticipated 
in every composite. In metallic systems it orig- 
inates from the difference in thermal contraction 
after preparation of the samples as well as from 
cold working. We disregard residual forces other 
than axial, because their effect on the axial mech- 
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anical properties can be expected to be small. 
Since the residual forces of  reinforcement and 
matr ix cancel necessarily, only one number is 
needed to characterize the state of  residual stress, 
which is called ao. This quant i ty  may be defined 
by 

VOFO = --(1 - -  V)O'MO ~ O" 0 ( 3 )  

where OF0 and OMO are the actual stresses in fibre 
or matrix,  respectively, in the absence of  external 

load, i.e. o = 0. Thus at e = 0 the components  are 
strained with 

GMO0 = OMoo/EM, eFO0 =" OFoo/EF (4) 

(imagine matr ix  under compression, for instance, 

i.e. eMO o < 0). Henceforth we will reason in terms 
of  initial residual stress at zero composite strain, 
which is indicated by  the subscript 00. I f  the com- 
posite is loaded with increasing tensile load a > 0, 
the matrix compression is first released, and the 
resulting strains o f  the components  are 

e M = eM00 + e (5a) 

el~ = eFOO + e (5b) 

Figure 2 Loading-unloading curves of a model 
composite with EF, EM, eFy , eMy, and v chosen 
so as to represent a stainless steel/aluminium com- 
posite of fibre volume fraction v = 0.3: (a) Matrix 
prestressed at tension, (b) no initial residual stress, 
(c) fibres prestressed at tension. Note that each of 
the three plots corresponds to the same loading 
program: loading up to e = 0.1, 0.3, 0.5, 0.7 and 
/> 1.5% with unloading after each stage. The 
qualitative differences are due to residual stress 
o n l y .  

These relations reflect the obvious fact that  in con- 
tinuous fibre composites all axial strain changes 
due to axial load are exactly the same for fibre, 
matrix,  and the whole composite,  disregarding the 
end regions of  the specimen. 

As soon as one of  the components  begins to 
yield, the composite changes its behaviour. The 
composite strain at which this qualitative change 
occurs is called here eyl .  Equation 5 leads to the 
relation 

GMy ----- eMo 0 + ey I i f  the matr ix yields first 
(6a) 

eFy = eF00 4- e r l  i f  the fibre yields first. 

For  strains not  too far above %1, the o(e)-plot of  
the composite looks like that  of  a strain-hardening 
material (Fig. 2b). If  the matr ix yields first, as in 
Fig. 2, the composite behaves in the following 
way: in the process of  unloading, when the com- 
posite contracts as a whole, the matrix strain de- 
creases and turns from tension to compression. We 
assume that  the matr ix yield strain for tension and 
compression are the same, which is a good approxi- 
mat ion for ductile materials. The elastic contrac- 
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tion of the composite during unloading, o/E1, 
cannot then exceed 2eMy. All further contraction 
must be accompanied by matrix flow, implying a 
slope Eli of that part of the downward o(e)-curve 
(Fig. 2). As may be easily seen, such a behaviour 
gives rise to hysteresis loops as a result of repeated 
loading. The strain at which hysteresis loops 
emerge with our model composite may be called 
ey h. Provided such a strain exists, its value follows 
from the above considerations via 

Oyh/Ei = 2eMy 
(6b) 

ayh = ey~ EI + (ehy - e y , ) E u .  

Obviously, a third critical strain must exist, which 
is related to the yield of the remaining component. 
Analogous to the deduction of Equation 6a we 
obtain from Equation 5 

eFy = eF00 + eye if the matrix yields first 
(6c) 

eMy = eMO0 + ey2 if the fibre yields first. 

Some composites exist where their reinforcement 
is not strong enough to cause the matrix to yield 
under compression when the composite is un- 
loaded. If the reinforcement yields first, which 
may occur even with strong-fibre composites, no 
hysteresis due to matrix flow can occur. On the 
other hand, the hysteresis loop of the composite 
of Fig. 2 decreases, the closer eyh and ey2 are 
brought together. Thus we have a condition for 
the occurrence of hysteresis due to matrix flow: 
ey h from Equation 6b must be lower than ey 2 
from (Equation 6c, first line). 

For the sake of completeness, the possibility of 
hysteresis due to fibre flow should be mentioned, 
i.e. the existence of another value eyh. The corre- 
sponding formula can be obtained from the former 
by interchanging fibre and matrix, i.e. F ~-> M and 
v-~ 1 - v .  

Having outlined the basic ideas, we may pro- 
ceed to formulate explicit expressions for ey 1 , eyh, 
and ey2 instead of those implicit in Equations 6a 
to c. 

= /eMy -- eM00 whichever is the smaller. (7a) 
eyl (eFy  - -  eF00 

800 

ey h = eFy (E~I + 1)--eM00 (7b) 

i f  eFy ~ I I  + 1 < eMy 

otherwise ey h is non-existent. 

= [eFy -- eF00 whichever is the greater. (7c) 
ey2 [eMy -- eM00 

Note that eM00 and eFoo are connected by 
Equations 3 and 4. The two alternatives in 
Equations 7a and c as on former occasions, refer 
to the two possible cases of one component yield- 
ing before the other. The internal stress can be 
chosen so that, at least theoretically, the two 
alternatives coincide: 

eMy - -  eMo 0 ---~ eFy - -  eFo 0 (s) 
v e t ( 1  - v)EM , 

if aoo = (eFy -- eMy) VEF ~-(1 - - - ~ M  ---- O00 

The composite stresses belonging to the strains eyl, 
eyh, ey2 are called ayl, Oyh, ay2. Using Equation 
6b and the relations 

%1 = eylEi  
( 9 )  

oy2 = oyl  + (ey: - e y l )En  

they can be obtained easily as functions of the 
parameters euy, eFy, EM, gv,  73, and aoo : 

ayl = [(1 -- V)aMy + aoo] ( - -  V E F  + 1t 
1 - v E ~  ! 

if aoo < ao~ 

(lOa) 

- -  + 1) 
/ 

if aoo > aoo. 

oyl =(VaFy--Ooo)( 1 V v EmEF 

Oyh=2aMy V ~ + I - - v  

if(1 -- V)aNy < a ~  

eyh = non-existent (10b) 

i f--  VaFy < ao~ < (1 -- V)OMy 

ayh = 2aFy (1 -- V) EFF + V if ao~ < -- VOFy 

oy2 = vory + (1 --V)OMy. (lOc) 



Among these quantities, which characterize dif- 
ferent aspects of composite strength, only oyl,  
which might be the one of most technical interest, 
depends on residual stress. The consequences of 
Equation 10 will be discussed later. 

With the characteristic values known, it is easy, 
of course, to construct o(e)-curves of any given 
loading regime in graphic or analytical form. 

2.3. Plastic deformat ion  
The set of the material, i.e. the deformation which 
remains after unloading, shows a peculiar depen- 
dence on maximum strain e which the composite 
has been subjected to. In the elastic region, i.e. up 
to %1, the set e s is zero. With increasing e it grows 
like that of a strain-hardening material. When e has 
exceeded eyh, the pull in the fibres has become so 
strong that towards the end of the unloading pro- 
cess, the matrix yields under the compressive load 
exerted on it by the fibres. Thus the composite 
will be pulled back to a certain set e~ (Fig. 2). 
Any further increase of e brings the composite 
again back to esc after unloading, provided e 
remains below ey2. Otherwise e s increases further, 
because both components are then yielding. 

From simple geometrical reasoning using Fig. 
2, we obtain 

e s = 0  if 0 < e < % ,  

- -E l i  
e s = (e -- eyl ) EI ~ ;  if %1 < e < eyh 

(11 a) 
-- eyl ) EI - EII if < e <  

es = (eyh E1 eyh ey2 

- -eyl)EI--EI~I+e--ey2 if ey 2 < e .  es = (eyh EI 

The constant value which e s assumes for ey h < e 
< ey2 is the number ese mentioned above. If eyh 
does not exist, Equation 1 la is simplified to 

es = I t e  -- % 1 ) - - ~  (1 lb) 

/ 
I E 1 - -  E u 

In this case no constant ese exists. 

( non-existent if e h does not exist 
ese = ~ E, ~--~n (12) 

((eyh - - ey , )  EII ifeyh does exist. 

Since %1 depends on residual stress, es and ese 
depend on it, too. The result of Equation 11 is dis- 
cussed in Section 3.2. 

2.4. S to red  ene rgy  and hysteres is  
Since the components of our idealized composite 
are to exhibit no hysteresis, in this section we shall 
only deal with that kind of hysteresis which is an 
intrinsic property of some types of fibrous com- 
posites, as is illustrate by the loops of Fig. 2. The 
area below the unloading branch of the a(e)-curve 
represents the stored elastic energy per volume, 
%1. Elementary calculations lead to the formulae 

~?e, = (e -- eyh + 2eMy) 2 Eu/2 +2e~y (E I --EH) 

i f  ey h < e < ey 2 

= ( e  + _ ( - v)  2 VE F eMY vE F ] VEF/2 
\ 

+ 2eM~,(1 -- V)EM. (13) 

(For the sake of simplicity, the symbol e has been 
assigned to the maximum strain of the cycle as 
well as to the strain variable.) In the region %2 < e, 
Tel is constant at the value %1(%2) according to 
Equation 11. 

The stored energy being known, the energy loss 
due to hysteresis, which is the area of the loop, 
can be obtained by subtracting 2r~el from the area 
of  the rectangle in which the loop is situated, with 
the sides e--es~ and o(e): r / = ( e - - e s ~ ) o - - 2 r l e b  
provided that hysteresis does exist. 

0 
if e < eyh or eyh does not exist 

r /=  / 2(e--  eyh) eMy(Ei - -Eu)  
if eyh < e < %2 and ey h does exist 

2(ey 2 -- eyh) eMy (EI - -En)  

if %2 < e and ey h does exist. 

(14) 

As can be seen from Equations 14 and 13, the 
ratio of hysteretic loss to stored elastic energy, 
~?fiTel, is a non-linear function of e. This will be dis- 
cussed in detail in Section 3.2. 

3. Discussion of the results 
3.1. Results related to strength 
Our results are aimed at both the understanding of 
composite behaviour in principle and the providing 
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Figure 3 Stress-strain curves of stainless steel and A1 
(99.99% pure), which show approximately the behaviour 
required for our model composite of Fig. 1 

of approximate data of any special fibrous com- 
posite system. For the latter purpose the quantities 
of  our idealized system must be related to those of  
the real ones. This may depend on the property in 
question as well as on the required precision. If  
one is interested in the elastic limit only, for aMy 
one would choose the elastic limit of  the matrix 
instead of matrix yield stress. Depending on the 
problem, for aFy one may choose one of the 
values at A, B, C or D in Fig. 3 or even the ulti- 
mate stress. 

According to this moderate arbitrariness, ayl 
may denote either the elastic limit or the yield 
stress of the composite, and ay2 may be the ulti- 
mate stress or merely that stress at which the com- 
posite as a whole begins to flow. These hints for 
proper use of Equations 7 and 8 will not concern 
us further. 

As a widespread phenomenon in composite 
research, efforts continue to produce reliable 
strength values close to the rule-of-mixtures data. 
As Cunningham and Alexander [2] stated, "the 
ef for t . . ,  can be summarized as stressing the elim- 
ination of filament breakage, the minimization of 
filament degradation, and the development of an 
adequate filament- matrix bond". These efforts 
may be necessary though surely not sufficient to 
create an "advanced family of  superior materials": 
high ultimate strength may be useful as a means of 
preventing catastrophic breakdown resulting from 
overload; try1 according to Equation 10a, however, 
seems to be a much more important composite 
property. As a consequence, efforts should be 
made to maximize ayl instead of ultimate stress. 

In the majority of  conceivable applications, the 
load must not exceed ayl.  At stresses below Oyl 
all phenomena promoting early damage are absent, 
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at least in the first approximation, which our 
model intends to provide. Therefore, the effect of  
residual stress on ayl should be of great interest. 

Since ao cannot exceed certain limits due to 
matrix flow or fibre failure, 

VaFy 
l ao I ~< whichever is the smaller, (I 5) 

(I - v) amy 

the region that may be swept over by ayx of the 
same composite is also limited. Let us consider, for 
instance, the case of aluminium reinforced with 
steel wires (EF/EM=3, eFy/eMy=10).  At 
reasonable volume fractions, the inequality vaFy > 
( 1 -  V)aMy holds, which reduces Condition 13 to 
l ao I~ < (1 --v)aMy. Since in this special case ao~ = 
27aMy V(1 -- V)/(1 + 2V) according to Equation 8, 
even the largest possible value of ao, and hence 
a00, is smaller than ao~, unless v is very small. 
Thus we are dealing with a composite whose 
matrix will yield under tension before the fibres 
do so. Consequently, the first formula of Cry1 in 
Equation 10 is applicable to our material. Inserting 
the largest possible values which aoo can assume, 
and aoo = 0 for comparison, we obtain 

0 

a y  1 -~-- 6MyEI 

[ 2eMyEI 

if Oo0 = 

provided that v>0.04, EF/E M = 3, eFy/eMy = 10. 
This means that oyl,  which amounts to eMyEI in 
the absence of residual stress, may vary between 
zero and twice of that value. 

Since o0o of a given composite material is gen- 
erally unknown, it would be desirable to know in 
advance the limits for ayl .  From Equation 7 it 
follows that it is possible in every case to prestress 
the composite so that Or1 = 0 and hence Oyl = 0. 
Calculating the upper limit, we must distinguish 
three types of composites, which will be explained 
with the help of a graphical representation (Fig. 4). 

Composites with eMy = eFy have values ay 1 = 
VOFy + (1 -- V)OMy = Oy2 in the absence of resi- 
dual stress, go0 = 0. This is, of course, the highest 
possible value of ayx. Moving in the (aMy, Ory) 
plane of Fig. 4 from the line eMy = eFy to the 
fight, where evy > eMy, we find composites with 
an increasing difference between oyl and ay2, in 
the absence of residual stress. By prestressing in 
the right way we can still get oyl, as high as ay2 : 
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Figure 4 Composite yield stress ay t (with only one 
component yielding) according to Equation 10a for 
various combinations of component yield stress aFy and 
aMy, in the presence of optimum residual stress according 
to Equation 16b; EF/E M = 3, v =0.3. 

This result is obtained by putting Ooo = a0~ in 
Equation 10. Proceeding further to the right in Fig. 
4, we find composites whose matrix is no longer 
able to withstand the residual stress required for 
oyl to equal Oy2. The boundary beyond which 
these composites are placed with a maximum resi- 
dual matrix stress of  OMOO = --aMy (that is aoo = 
(1 --V)OMy) is given by the straight line (1 --V)aMy 
= ao~. Such composites sustain elastic defor- 
mation up to 2eMy , corresponding to a stress of  
26MyEI, which turns out to be ayh, of  Equation 
10. In the half plane eMy > e F y ,  the situation is 
analogous. There all results follow from those for 
eMy < eFy by interchanging F § M and (1 - v) 

v in  the formulae. To sum up, 

if - -  V O F y  < OrO0 < (1 - -  V ) O M y  

then 0 < Oyl < Oy2 (16a) 
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Figure 5 Residual stress %0 required for maximizing ay 1 
according to Equation 16b, i.e. the optimum residual 
stress of Fig. 4. 

The formulae 16 and the example given above 
emphasize the importance of  residual stress. The 
question now is what magnitude those stresses are 
expected to be in reality. One possible source o f  
residual stress is different thermal contraction 
after hot pressing. A crude approximation can be 
obtained by setting up the balance of  forces in 
fibre direction, neglecting all that may happen 
perpendicular to the fibres: 

(El -- EII)EII 
O o o -  E1 ( O t F - - O t M ) ( T 2 - - T 1 ) .  (17) 

Hence Ooo < 0, if the composite is stress-free at 
the higher temperature / '2, and the coefficients o f  
thermal expansion obey the relation o~ F < a M. Un- 
fortunately, this situation is met in most metallic 
composites produced by hot-pressing or subjected 
to thermomechanical treatment. Therefore, as- 

18 
otherwise 0 < ayl < Oyh. ~ /  

The residual stress required for ayl to co~,cide 'e 
with. the upper limit in Equation 16a, i.e. opti- ~12 
m , ,  um residual stress , is consequently gwen by the 
following expression: 

6 

aoo = --- VaFy if -- VaFy > ao~ (16b) 

Ooo = ao~ otherwise o.1 0"2 0"3 
St ra in  8 (~ 

(see Fig. 5). Thus a0~ of  Equation 8 is the opti- Figure 6 Experimental a(e) curve of a steel wire/A1 
mum residual stress of  a certain class of  com- (99.99% pure) composite with v = 0.3, where ay~ = 0 
posites, because of residual stress due to hot pressing. 
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pressed samples of steel wire/N-composites may 
show oyl = 0 as in Fig. 6. Such a performance, of  
course, is highly undesirable. This o(e)-plot of Fig. 
6, however, as well as that of  Fig. 2, shows a 
simple means to overcome the difficulty: after 
stretching there are other residual stresses which 
are of a more desirable nature. If the total strain 
reached eyh (or ey2 in those cases where eyh does 
not exist) the useful stress assumes its largest 
possible value. Thus eyh (or ey2) is a quantity 
important for cold-working. Compared with the 
degree of deformation usually met with cold- 
working, ey h is a very small strain. This means 
that samples which underwent final cold-working 
are certainly prestressed in the desired way. Since, 
in general, very small degrees of  deformation, (less 
than 1%) are sufficient to generate the desired 
residual stress, it should be possible to prestress 
even composites with brittle fibres by this method, 
if special care is taken to obtain definite strain. 

Fig. 7 shows the o(e)-curve of an optimally pre- 
stressed composite at repeated loading. 

In order to emphasize the flexibility of our 
scheme, we will demonstrate how information on 
other types of systems can be derived almost 
immediately from our results. If  one wants to take 
into account fibre or matrix fracture in addition 
to, or instead of, yield, one may start from 
Equation 5: that composite strain which causes 
fracture of  one component is called e~l. I f  the fila- 
ment breaks first, then eFf = eFoo + efa. If  ell is 
known, eel can be derived. By comparison with 
the strength of the remaining component, it can be 
decided whether-this is the ultimate strength or 
not. Since no additional ideas are required to 

50 

4 0  
I E 

E 

~30 

b 
2O 

I0 

, , i , , , , 

0"2 0.4 0 ' 6  
Stroin E (%) 

Figure 7 Experimental o(e) curve of  a high-strength steel 
wire/A1 (99.99% pure) composite with v = 0.3, where the 
set e s = 0 because of  residual stress due to stretching after 
hot  pressing. 
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derive the corresponding formulae, we will confine 
ourselves to these few remarks. 

Substituting y (yield) by f(fracture) in Equation 
10a, we obtain the formula for oa  of brittle com- 
posites. The only thing remaining to be done is to 
modify Equation 15, since tensile and compressive 
strength of brittle materials differ considerably~ 

We will not undertake the tedious task of in- 
vestigating all types of composites which are gen- 
erated by permutation of the series eMy < eFy < 
eM~ < eFf, the number of which could still be in- 
creased by allowing the components to exhibit dif- 
ferent behaviour under compression and tension. 
The properties of  any system of interest may, o f  
course, be worked out easily by proceeding along 
the lines given above. 

A recent paper by Sorsorov et al., Composites 7 
(1976) 17, seems to contain an extension of our 
ideas to a model composite with a work-hardening 
matrix. Ustinov, one of the authors, became 
acquainted with our work at a joint working 
session in Moscow in 1974. 

3.2. Results related to yield of one 
component 

Composite properties caused by yield are of 
interest for fabricational and quality controlling 
purposes rather than representing useful properties 
of the final product. There are possible exceptions: 
the huge hysteresis loop might be useful for 
damping dangerous oscillations which otherwise 
would cause catastrophic events. 

The hysteretic loss does not change monot- 
onically with v since it must vanish at v = 0 as well 
as at v = 1 and, therefore, must exhibit a maxi- 
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Figure 8 Hysteretic loss of  high-strength steel wire/A1 
(99.5% pure) composite with v = 0.3, superimposed on a 
family of  model curves according to Equation 14. 
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Figure 9 Ratio of hysteretic loss to stored elastic energy 
according to Equations 13 and 14; EF/E M = 3, v = 0.1, 
0.3, and 0.5. 
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Figure 10 The setting of some high-strength steel wire/ 
aluminium composites after straining to e. 

mum at some value of v in between: the maximum 
of r/(ey2), for instance, is reached at 

V = eMyEM + (eFy - -  2eMy)EF " 

In general, real composites behave in this respect 
nearly like ideal ones, but at strains not too close 
to ey 2 . 

Fig. 8 shows the work of hysteresis plotted 
versus the maximum strain of the cycle for our 
idealized composite according to Equation 14 as 
well as an experimental curve from a steel wire/A1- 
composite. Note that the experimental curve tends 
rapidly toward zero at small e. Badly prepared 
samples show much larger hysteresis at small e. 
Thus hysteresis measurement is a good means of 
determining the quality of semi-finished com- 
posite products. 

Hysteresis data are often directly obtained as 
~?/r/el; this rather unwieldy function derived from 
Equations 13 and 14 is illustrated in Fig. 9. It can 
be dearly seen that residual stresses shift the 
curves along the e-axis. 

Like hysteresis, the set es(e) is generally 
not desired, but is able to provide information on 
deviations from the ideal structure of the com- 
posite. Furthermore, the residual stress a0o, the 
detection of which by direct means requires some 
effort [3], can easily be derived from the plots of 
es(e) or r~(e). For this purpose the experimental 
curve must be compared with the family of  curves 
arising from Equations 11 or 14, respectively, by 
variation of ao0 (Fig. 8). Such a procedure would 

also work well with Fig. 10; however, we have not 
done so, in order to keep the figure as uncompli- 
cated as possible in order to point out other 
features: the piecewise linear shape of the curves 
es(e ) of our model composites, which is stated in 
Equation 11, is observed very accurately with 
some real composites. This serves as further evi- 
dence for the usefulness of our simple model. On 
closer consideration, significant deviations from 
the ideal behaviour are revealed. Two of the four 
alloy matrix curves of Fig. 10, which are expected 
to be straight lines right down to the e-axis, 
deviate shortly before reaching it, which indicates 
departure from perfect structure. 

The optimally prestressed sample of  Fig. 7 
shows no setting at all: since eyl and eyla coincide 
in this case, e s equals zero up to e = ey2 according 
to Equation 1 l a, which means that our curve 
coincides with the abscissa axis. Another sample 
with an A1(99.5% pure) matrix, behaves in a com- 
pletely different way. This can be explained by the 
reversed sign of residual stress compared with the 
former (curve begins to rise from e = 0 onward), 
combined with misalignment (non-zero slope at 
e > eyh). More of our results are shown in Fig. 
14, which is commented on within the next 
section. 

4. C o m m e n t s  o n  o t h e r  w o r k  
In addition to our introductory remarks which 
explained the reasons for our simple approach, 
further justification might be derived from the fact 
that we have, by this reasoning, detected some 
erroneous results and statements in papers of  more 
complex and sophisticated investigations of special 
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systems. In a paper on fatigue of fibre-reinforced 
aluminium [4], Baker is of the opinion that it would 
be desirable to avoid large internal stresses, which 
should be done by using matrices of  low yield 
stress; hence, "it is desirable to have a matrix of  
high yield stress only when the fibres are relatively 
weak . . . " .  However, we feel that based upon our 
results, metallic composites of high-strength fibres 
and very weak matrix are of  little use. Unlike the 
situation in composites with a resin matrix, where 
despite the low strength of the matrix its elastic 
strain limit is high, metallic systems having a low 
matrix strength imply a low yield strain 
because of the small modulus ratio EF/EM, re- 
suiting in low oy 1 . Thus eyl of composites of  pure 
A1 matrix with crMy = 4.5 kgfmm -2 in situ matrix 
yield stress, and 30voi% high-strength fibres, 
amounts to no more than ayl = 2eMyEi = 14kgf 
mm -2 , no matter how strong the fibres are. This is 
roughly the stress at which the number of loading 
cycles to failure decreases rapidly, whereas the 
high-strength steel wires, for instance, have been 
stressed up to as little as 4% of their strength. The 
reinforcement of metals by high-strength fibres 
must, therefore, preclude the use of unduly weak 
matrices, perhaps with the exception of some 
rather particular applications. Baker suggests that 
residual stresses may be avoided by using weak 
matrices which entails eliminating stresses by ex- 
pelling composite strength. Our results suggest an 
alternative approach by turning the tendency to 
build up residual stresses into an advantage, by 
generating stresses of a useful nature, as dis- 
Cussed in Section 3.1. 

Baker's Equation 16 for damping capacity 
corresponds to our result for the special case of 
aoo --- (1 -- v)er~y. The derivation of this formula, 
however, is not correctly given in [4]: for in- 
stance, Baker interprets the term 2(1 -- v)OM2y/E M , 

as elastic energy contained in the matrix. However, 
the matrix is unable to store more than a quarter 
of that amount of elastic energy. There is also a 
misprintin Equation 17 of [4]. 

Varshavsky [5] gives an equation for the 
damping capacity which agrees with ours in the 
approximation 7/el~ (re/2. However, our inter- 
pretation is entirely different from that given by 
Varshavsky : In Fig. 3 of  [5] the hysteresis loops 
can be seen distinctly even at  strains as low as e = 
0.5 • 10 -3 . The  aluminium.alloy with its yield 
stress of  amy = 28kgfmm-2~should exhibit no 
essential deviation from thel elastic straight 
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line in its a(e)-plot up to about e - - 3 •  -3 . 
As the fibres will also behave purely elastically, 
there should be no hysteresis evident in 
Varshavsky's Fig. 3. The comparatively large loops 
observed experimentally must, therefore, be due to 
causes other than overall matrix yield, i.e. mis- 
alignment of fibres or inhomogeneous stress distri- 
bution inside the sample. Under such circum- 
stances the tangent modulus at the upper point of 
the loop is in no way connected with the second- 
ary composite modulus E n = v E t .  If all the 
experimental tangents appear to have a common 
slope E n (E2 in Varshavskys notation), a certain 
ambiguity in the drawing of the tangent, as well as 
the desire to obtain EII, may account for this. The 
monotonous o(e) curves of Fig. 4 of [5] resemble 
the ideal ones because of their exact linearity, 
which is inconsistent with the observations men- 
tioned above. The slopes of  the curves coincide 
with the data of Table I of  [5]. Thus the monot- 
onous curves were probably not observed directly, 
but constructed from averaged cyclic data. They 
cannot, therefore, serve as independent experi- 
mental evidence. We feel, therefore, that con- 
sequences derived from his experimental results, 
i.e. the very high in situ matrix modulus of 17 400 
k g f m m  -2 , the surprisingly strong dependence of 
matrix properties on fibre content (Fig. 5 and 6 of 
[5]), and the unreasonable values of  the fraction 
of load carried by the fibres (Fig. 7 of [5] ), should 
be rejected. Varshavsky's Fig. 11 appears to be an 
adaptation of his Fig. 4 by means of his Equation 
17, and thus contains no extra experimental in- 
formation. 

Several other papers report the observation of a 
considerable increase of  in situ matrix strength due 
to the presence of fibres [6 -8 ] .  These obser- 
vations prompted some authors to attempt an ex- 
planation of the effect [8 -13] .  It is worthwhile 
to reconsider the in situ matrix data in the light of 
our findings. By a reconstruction of matrix stress- 
strain curves from those of composite and rein- 
forcement (Figs. 2 and 3 of  [8]) we obtained a 
different family of curves (our Fig. 11) than those 
of Lee and Harris (Fig. 4 of [8] ). In Fig. 3 [8] the 
slope of the 48/am curve is too steep when com- 
pared with the modulus data of Table I [8]. 
Assuming that the 48/am data of Fig. 3 [8] had a 
systematic error of 5%, which seems likely because 
of the different initial slope, the derived 48/am 
matrix curve fits very well into the rest of  the 
family. Up to this point residual stress has not 
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Figure 11 In situ matr ix  stress-strain curves redrawn from 
the results o f  Lee and Harris [18] on copper / tungs ten  
composites.  

been considered. Fig. 11 has been derived with the 
presumption that residual stress is absent. In the 
presence of residual stress the result is somewhat 
different. The rule of mixtures takes the form 

o(e) = VOF(e + eF00) + (1 + V)OM(e -1- eM00) 

(18) 

where eF00 and eM0o are connected by 0 = VOF 
(eFO0) 4 - ( l - - V ) O M ( e M O 0 )  , which is Equation 18 
at e = 0. The effect of residual stress on the in situ 
matrix behaviour is shown in Fig. 12, which has 
been derived with the aid of Equation 18 from the 
composite and fibre data of [8]. It may be inter- 
preted in the following way. If the fibres are pre- 
stressed at tension but the matrix curve is derived 
as if there were no residual stress, the resultant 
curve is too high. For reasons given above, the 
virgin samples of Lee and Harris can be expected 

Strain E 

Figure 13 Derivation o f  in situ matr ix  behaviour f rom 
hysteresis loops. 

to be prestressed at aoo < 0, whereas in the course 
of cyclic testing, ao rises considerably above zero. 
As a consequence, the monotonic matrix curves 
were too low, and cyclic ones too high in the cal- 
culations of Lee and Harris. Therefore, the whole 
or part of  the difference between Figs. 4 and 5 of 
[8], may be caused by simply neglecting residual 
stress. 

For systems exhibiting distinct hysteresis, e.g. 
Fig. 7, the in situ o(e) curve of the matrix can be 
derived easily: draw the tangents at the points of 
zero stress and maximum stress at each loop. If the 
loops show deviations from ideal shape, proceed as 
indicated in Fig. 13. After having constructed in 
this way an idealized counterpart of the real loop, 
one immediately obtaines 2eMy and hence OMy 

as a function of the maximum cyclic strain. Care 
must be taken that the loops subjected to this 
procedure are sufficiently large in order to show 
clearly the slope En. Fig. 14 shows some curves 
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Figure 12 In situ matr ix  stress-strain curves redrawn f rom 
the results o f  Lee and Harris [8] for a fibre diameter  d = 
11 gm,  taking into account  various amoun t s  o f  residual 
stress according to Equat ion  18. 
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Figure 14 In situ matr ix  stress-strain curves (smoothed)  o f  
high-strength steel wire/Al (99.5% pure) composite,  
derived from hysteresis loops; v = 0.1 to 0.3. 
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derived in this way for an A1 matrix. The samples 
J 

were taken from different series. As a result, the 
curves tend to group themselves into families with 
common features. Although detailed investigations 
have not yet been performed, there is no doubt 
that these features are related to technological 
parameters and that they carry information about 
the microstructure of the composite. 

Our method has the advantage of not being 
affected by residual stress or uncertainties in 
volume fractions and load carried by the fibres, 
which make some of the in situ matrix curves 
derived using the rule of mixtures highly question- 
able. Hancock and Grosskreutz [14], for instance, 
find a(e) of the matrix in situ to be smaller than 
that of the compact matrix, and, in addition, they 
observe small values of oyl (our notation). How- 
ever, they do not consider that axial residual stress 
could be the cause of both observations. Further- 
more, the axial component is neglected explicitly 
because they claim that transverse residual stress 
is important. According to our investigations, the 
contrary is true: the axial component of residual 
stress gives rise to remarkable phenomena, whereas 
the transverse components may be neglected in a 
first approximation. 

The remarkably high rate of strain hardening of 
the single crystal copper matrix reported by Kelly 
and Lilholt [6] is not questioned when considered 
from our point of view. Neglecting residual stress 
in the calculation of in situ o(e) may alter the 
result by a factor of 0 to 2 at the most, which 
follows from Equations 10a and 15. The relative 
error due to neglect of residual stress in [6] seems 
to be very small. 

The neat microstrain hysteresis loops of steel 
wire/Al composite reported by Pinnel and Lawley 
[15] are not to be confused with the loops con- 
sidered in this paper, as they are of another origin. 
Unfortunately, the various curves in [15] are 
mutually incompatible, which is possibly due to 
some errors: thus the cause of their loops cannot 
be ascertained. The loops may not be real phenom- 
ena, but created by the apparatus, a suspicion 
which appears to be substantiated by another 
paper by Pinnel et al. [16] on similar precision 
measurements. 

The effect of residual stress on composite 
properties is occasionally mentioned in literature, 
but sometimes the statements are not quite cor- 
rect. 

Mehan [17] takes into account thermal stress 
more carefully than we have done in Equation 17. 
He comes to the misleading conclusion that the Al 
matrix of his composite yields as a result of 
thermal stress in the vicinity of the fibres..His 
formula, however, shows that the matrix will yield 
throughout the composite. 

Stuhrke [7] points out a reduction of the 
elastic limit by residual stress. However, his obser- 
vation that plastic flow removes the residual stress 
may be misinterpreted especially as no mention is 
made about useful residual stresses. 

A special instance of the effect of residual stress 
on 0o.2 is treated correctly in a monograph by 
Ivanova et al. [18]. Their schematized o(e) plot, 
however, shows some features which do not corre- 
spond to a real situation. 

If residual stress is to be utilized as a means for 
increasing the composite yield stress, oyl, as indi- 
cated in Section 3.1, it is important to know to 
what extent residual stress decays with time. 
Investigations along these lines are very useful and 
some results have been reported by Parrat [19]. 
Our investigations on the decay of residual stress 
are currently being carried out. 
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